Perfect matchings and Hamiltonian cycles in the preferential attachment model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect matchings and Hamiltonian cycles in the preferential attachment model

We study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that if m ≥ 1,260, ...

متن کامل

Perfect matchings and Hamiltonian cycles in the preferential attachment model

In this paper, we study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that...

متن کامل

On Perfect Matchings and Hamiltonian Cycles in Sumsof Random

We prove that the sum of two random trees almost surely possesses a perfect matching and the sum of ve random trees almost surely possesses a Hamiltonian cycle.

متن کامل

Entropy bounds for perfect matchings and Hamiltonian cycles

For a graph G = (V,E) and x : E → < satisfying ∑ e3v xe = 1 for each v ∈ V , set h(x) = ∑ e xe log(1/xe) (with log = log2). We show that for any n-vertex G, random (not necessarily uniform) perfect matching f satisfying a mild technical condition, and xe = Pr(e ∈ f), H(f) < h(x)− n 2 log e+ o(n) (where H is binary entropy). This implies a similar bound for random Hamiltonian cycles. Specializin...

متن کامل

Cycles and perfect matchings

Fan Chung and Ron Graham (J. Combin. Theory Ser. B 65 (1995), 273-290) introduced the cover polynomial for a directed graph and showed that it was connected with classical rook theory. M. Dworkin (J. Combin. Theory Ser. B 71 (1997), 17-53) showed that the cover polynomial naturally factors for directed graphs associated with Ferrers boards. The authors (Adv. Appl. Math. 27 (2001), 438-481) deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures & Algorithms

سال: 2018

ISSN: 1042-9832,1098-2418

DOI: 10.1002/rsa.20778